Preface 本文是用tensorflow实现全连接神经网络来解决MNIST问题的记录。
总共有三个文件,分别是mnist_inference.ipynb
(定义了前向传播的过程以及神经网络中的参数),mnist_train.ipynb
(定义了神经网络的训练过程),mnist_eval.ipynb
(定义了测试过程)
mnist_inference 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 import tensorflow as tfINPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable (shape, regularizer) : with tf.variable_scope('' , reuse=tf.AUTO_REUSE): weights = tf.get_variable( "weights" , shape, initializer = tf.truncated_normal_initializer(stddev = 0.1 )) if regularizer != None : tf.add_to_collection('losses' , regularizer(weights)) return weights def inference (input_tensor, regularizer) : with tf.variable_scope('layer1' , reuse=tf.AUTO_REUSE): weights = get_weight_variable( [INPUT_NODE, LAYER1_NODE], regularizer) biases = tf.get_variable( 'biases' , [LAYER1_NODE], initializer = tf.constant_initializer(0.0 )) layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2' , reuse=tf.AUTO_REUSE): weights = get_weight_variable( [LAYER1_NODE, OUTPUT_NODE], regularizer) biases = tf.get_variable( "biases" , [OUTPUT_NODE], initializer = tf.constant_initializer(0.0 )) layer2 = tf.matmul(layer1, weights) + biases return layer2
mnist_train 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 import Ipynb_importerimport osimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport mnist_inferenceBATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 MODEL_SAVE_PATH = "/home/sail/hacker/dl/model" MODEL_NAME = "sail.ckpt" def train (mnist) : with tf.variable_scope('' , reuse=tf.AUTO_REUSE): x = tf.placeholder( tf.float32, [None , mnist_inference.INPUT_NODE], name="x-input" ) y_ = tf.placeholder( tf.float32, [None , mnist_inference.OUTPUT_NODE], name="y-input" ) regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0 , trainable=False ) variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variable_averages_op = variable_averages.apply( tf.trainable_variables()) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels = tf.argmax(y_, 1 ), logits =y ) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses' )) learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variable_averages_op]): train_op = tf.no_op(name='train' ) saver = tf.train.Saver() with tf.Session() as sess: tf.initialize_all_variables().run() for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_:ys}) if i % 1000 == 0 : print("after %d training step(s), loss on training batch is %g " % (step, loss_value)) saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main (argv=None) : mnist = input_data.read_data_sets("/home/sail/hacker/dl/tensorflow/book-one/MNISTData" , one_hot=True ) train(mnist) if __name__ == '__main__' : tf.app.run()
mnist_eval 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 import Ipynb_importerimport timeimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport mnist_inferenceimport mnist_trainEVAL_INTERVAL_SECS = 10 def evaluate (mnist) : with tf.Graph().as_default() as g: x = tf.placeholder( tf.float32, [None , mnist_inference.INPUT_NODE], name="x-input" ) y_ = tf.placeholder( tf.float32, [None , mnist_inference.OUTPUT_NODE], name="y-input" ) validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = mnist_inference.inference(x, None ) correct_prediction = tf.equal(tf.argmax(y, 1 ), tf.argmax(y_, 1 )) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage( mnist_train.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) while True : with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state( mnist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/' )[-1 ].split('-' )[-1 ] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("after %s training step(s), validation accuracy = %g " % (global_step, accuracy_score)) else : print('No checkpoint file found' ) return time.sleep(EVAL_INTERVAL_SECS) def main (argv=None) : mnist = input_data.read_data_sets("/home/sail/hacker/dl/tensorflow/book-one/MNISTData" , one_hot=True ) evaluate(mnist) if __name__ == '__main__' : tf.app.run()